Electrostatic cloaking of surface structure for dynamic wetting

نویسندگان

  • Satoshi Nita
  • Minh Do-Quang
  • Jiayu Wang
  • Yu-Chung Chen
  • Yuji Suzuki
  • Gustav Amberg
  • Junichiro Shiomi
چکیده

Dynamic wetting problems are fundamental to understanding the interaction between liquids and solids. Even in a superficially simple experimental situation, such as a droplet spreading over a dry surface, the result may depend not only on the liquid properties but also strongly on the substrate-surface properties; even for macroscopically smooth surfaces, the microscopic geometrical roughness can be important. In addition, because surfaces may often be naturally charged or electric fields are used to manipulate fluids, electric effects are crucial components that influence wetting phenomena. We investigate the interplay between electric forces and surface structures in dynamic wetting. Although surface microstructures can significantly hinder spreading, we find that electrostatics can "cloak" the microstructures, that is, deactivate the hindering. We identify the physics in terms of reduction in contact-line friction, which makes the dynamic wetting inertial force dominant and insensitive to the substrate properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Implementation of Frequency Selective Surface Cloak for Cylindrical Structures

The main purpose of this paper is to design, implement and measure a new sample of mantle cloak. A new method called mantle cloak is introduced by cloaking an object by a single, conformal meta-surface which can drastically suppress the scattering of the desired object. In this paper, a grid lattice is placed around a dielectric object as the cloaking structure. Previously, this FSS has been ut...

متن کامل

تأثیر نوع ساختار و زبری سطح بر زاویه ترشوندگی یک چدن هیپویوتکتیک با آب

Preliminary results of a research on the effects of microstructure and surface roughness of a hypoeutectic cast iron on its wetting angle are presented in this article. For this purpose, molten cast iron was solidified at different cooling rates to produce two samples of the same composition, i.e. a gray cast iron with A type flake graphite and a white cast iron. Two samples were then prepared ...

متن کامل

Bifurcation and Chaos in Size-Dependent NEMS Considering Surface Energy Effect and Intermolecular Interactions

The impetus of this study is to investigate the chaotic behavior of a size-dependent nano-beam with double-sided electrostatic actuation, incorporating surface energy effect and intermolecular interactions. The geometrically nonlinear beam model is based on Euler-Bernoulli beam assumption. The influence of the small-scale and the surface energy effect are modeled by implementing the consistent ...

متن کامل

Atomic force microscopy imaging of hair: correlations between surface potential and wetting at the nanometer scale.

We report investigations of hair surface potential under wetting at the nanometric scale by atomic force microscopy (AFM). Surface potential imaging was used to characterize the electrostatic properties of the hair samples. We found that the surface potential noticeably increases along the edges of the cuticles. These results are correlated with wetting behavior of different liquids performed u...

متن کامل

Wetting of water on hexagonal boron nitride@Rh(111): a QM/MM model based on atomic charges derived for nano-structured substrates.

The wetting of water on corrugated and flat hexagonal boron nitride (h-BN) monolayers on Rh(111) is studied within a hybrid quantum mechanics/molecular mechanics (QM/MM) approach. Water is treated by QM methods, whereas the interactions between liquid and substrate are described at the MM level. The electrostatic properties of the substrate are reproduced by assigning specifically generated par...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2017